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Abstract: Imitation learning has shown great promise in robotic manipulation,
but the policy’s execution is often unsatisfactorily slow due to commonly tardy
demonstrations collected by human operators. In this work, we present Demo-
Speedup, a self-supervised method to accelerate visuomotor policy execution via
entropy-guided demonstration acceleration. DemoSpeedup starts from training
an arbitrary generative policy (e.g., ACT or Diffusion Policy) on normal-speed
demonstrations, which serves as a per-frame action entropy estimator. The key
insight is that frames with lower action entropy estimates call for more consistent
policy behaviors, which often indicate the demands for higher-precision opera-
tions. In contrast, frames with higher entropy estimates correspond to more casual
sections, and therefore can be more safely accelerated. Thus, we segment the
original demonstrations according to the estimated entropy, and accelerate them
by down-sampling at rates that increase with the entropy values. Trained with the
speedup demonstrations, the resulting policies execute up to 3 times faster while
maintaining the task completion performance. Interestingly, these policies could
even achieve higher success rates than those trained with normal-speed demon-
strations, due to the benefits of reduced decision-making horizons.
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Figure 1: Manipulation speed is crucial for improving the productivity and ensuring the success
of time-sensitive tasks. DemoSpeedup enables boosting the execution speed of visuomotor policy
from slow demonstrations. Left: Original policy fails to track the speed of the production line and
scan the products, while DemoSpeedup succeeds. Right: DemoSpeedup succeed to depose the time
bomb toy before the end of countdown but the original policy fails.

1 Introduction

Imitation learning has achieved remarkable success for robot manipulation tasks from a perspective
of task completion rates [1, 2, 3, 4], but visuomotor policies are often less satisfactory in terms of
time efficiency. For visually pleasing fluency, it has become a common practice in the policy learning
community that the presented video demos are accelerated by 2× ∼ 10× [1, 2, 5]. However, low



efficiency might be a concern for some time-sensitive settings in the real world, e.g., caring for
babies and the elderly or manufacturing on an assembly line.

Recently, some test-time policy acceleration techniques have been developed to improve execution
speed by naively down-sampling the action chunk to be executed at test time [6, 7]. However, test-
time acceleration often leads to a notable performance drop when the acceleration rate is relatively
high (e.g., by 2×) due to the apparent distributional shift induced by speedup during deployment.

In this work, we assume that tardy demonstrations collected by human operators are the primary
cause for the slow execution of behavior cloning policies. Empirically, we observed that even skill-
ful data collectors with over 100 hours of experience struggle to teleoperate the robot arms as fluently
as using their own hands. In both VR [8, 9, 10] and kinematics-teaching [11, 12, 13, 14] teleoper-
ation, the lack of full-directional, non-occluded view of the 3D scene, as well as the absence of
tactile proprioception, are the major obstacles to achieving faster motions. Besides, morphological
heterogeneity between humans and robots, combined with equipment latency, further increases the
difficulty of teleoperation and slows down the data collection speed.

In response to the tardiness of human-collected demonstrations, we introduce DemoSpeedup, de-
signed to boost policies’ execution efficiency without sacrificing their task completion performance.
Rather than naively downsample the demonstrated trajectories by a constant rate, DemoSpeedup pre-
serves the high-precision sections (e.g., picking up objects) and only accelerates in the low-precision
sections (e.g., approaching objects in free air) to promote the task completion rate after acceleration.

The core of DemoSpeedup is an entropy-guided precision measurement mechanism, which allows
the adaptive adjustment of the acceleration rate while avoiding the need for additional human anno-
tations or hand-designed, task-specific priors. Our key observation is that human operators tend to
have multiple casual yet reasonable choices in low-precision sections, and follow more consistent
behaviors in high-precision sections to ensure successful manipulation. Therefore, action entropy,
which reflects the randomness of the actions, could be an implicit indicator of the precision required.
However, the discretized actions recorded in the demonstration trajectory are very sparsely located
in the multi-dimensional continuous action space, which is the major obstacle to calculating the
action entropy offline from the human-collected demonstration dataset.

In DemoSpeedup, we propose to overcome the obstacle by estimating action entropy from a self-
supervised proxy policy, which can be an arbitrary generative behavior learning policy trained on the
non-accelerated source dataset. The proxy policy is not responsible for action prediction, but is only
used to help distill the action entropy information embedded in the source dataset. A clustering-
based scheme is designed to process the proxy-inferred per-frame entropy into trajectory segmenta-
tion with precision labeling, ready for piecewise varying-speed acceleration. Finally, the accelerated
dataset facilitates the training of an accelerated behavior cloning policy, which is the end product of
the DemoSpeedup pipeline used for action prediction during deployment.

Empirically, we validate the effectiveness of DemoSpeedup by instantiating it with two popular
generative behavior cloning policies: Action Chunking with Transformers (ACT) [15] and Diffusion
Policy (DP) [1]. We conduct extensive experiments on a diverse range of tasks in the simulation
and the real world. The results demonstrate DemoSpeedup strikes a 1.7× ∼ 3× speedup in time
efficiency, while obtaining task completion success rates on par with or sometimes even higher than
the same policy trained on the non-accelerated dataset.

2 Related Work

Learning from human demonstrations. Learning from human demonstrations has emerged as a
widely adopted approach in robotic manipulation. Generative policies trained by imitation learning,
such as ACT [15] and Diffusion Policy [1] can strike a performance that matches the demonstrations.
The generalization of imitation learning [16, 17, 18] has been boosted over the years. However,
execution speed of current imitation learning paradigms is still restricted by the slow demonstrations.
The problem still exists in large datasets [19, 20, 21, 22] collected by teleoperation. While VLAs
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Figure 2: DemoSpeedup utilizes a generative policy trained from original demonstrations to estimate
conditional action entropy. Actions with high entropy (red points) are down-sampled at a higher rate
while actions with low entropy (green points) are down-sampled at a lower rate.

trained with those large datasets [19, 23, 24, 25] exhibits strong generalization, numerous slow
demonstrations within the data cause the learned policies to be much slower than normal human
speed. This hinders the real-world application of robots in daily life.

Data curation for manipulation. Several prior works curate data aiming to improve the success
rate of the trained policy. [26] train and cross-validate a classifier to discern successful policy roll-
outs from unsuccessful ones and use the classifier to filter heterogeneous demonstration datasets.
[27, 28] down-sample the demonstrations with either geometric or human-labeled metrics, showing
that by reducing episode length, the compounding error could drop [29] and the success rate can
increase. But they relies on close-loop control and make the manipulation time longer. Overall, all
these methods focus on improving success rates. In contrast, the objective of curating data in this
work is to boost manipulation speed. At the same time, the episode length reduces, resulting in a
potential effect to improve the performance.

3 Method

In this section, we present DemoSpeedup, an entropy-guided approach to accelerate demonstrations
to speed up policy execution. As shown in Figure 2, DemoSpeedup first utilizes a proxy policy
trained on source data to estimate the action entropy in a nonparametric way. Then it leverages a
density-based cluster method to segment trajectories into high-precision and low-precision sets, fol-
lowed by piecewise down-sampling at rates according to the precision level. Finally, some training
and deployment details is introduced to guarantee the performance of accelerated policies.

3.1 Action Entropy Estimation

We leverage action entropy to reflect the precision level required for an action in human demon-
strations. To estimate the conditional action entropy of demonstration frames, DemoSpeedup starts
from training a proxy policy on the source dataset of original-speed demonstrations. We represent
the behavior cloning policy as πθ(At|ot), where At = {at[t], at[t + 1], ..., at[t + K − 1]} is the
action chunk [30] and K is the chunk length. For entropy calculation, we sample N action chunk
samples {ait[t], ..., ait[t +K − 1]}Ni=1 conditioned on the current observation ot. Then, we perform
Gaussian kernel density estimation [31] to obtain the probability density distribution of the actions
conditioned on the current observation:

p̂(at|ot) =
1

NKh

t∑
j=t−K+1

N∑
i=1

1√
2π

exp

(
−
(at − aij [t])

2

2h2

)
(1)
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where h is the bandwidth. Then we estimate the conditional action entropy at ot by:

Ĥ(at|ot) = −
t∑

j=t−K+1

N∑
i=1

p̂(aij [t]|ot) log p̂(aij [t]|ot) (2)

We perform the per-frame operation along all timesteps for all the trajectories in the dataset. We
instantiate the proxy policy with either Action Chunking with Transformers (ACT) [15] or Diffusion
Policy (DP) [1]. For ACT, action samples are obtained by sampling different latent variables in the
CVAE prior distribution, i.e, x ∼ N (0, 1). For DP, action samples are generated by sampling
multiple noise sequences given the observation.

3.2 Entropy-Guided Demonstration Acceleration

The estimated entropy paves the way for subsequent steps to identify the precision level of different
segments and accelerate them at different rates. We develop a cluster-based approach to determine
the precision level and leverage entropy for demonstration speedup.

Entropy preprocessing. As the teleoperation data can be very noisy and have harmful impact
on clustering, we first utilize Isolation Forest [32] to detect the abnormal entropy values in one
trajectory, after which the outliers are substituted by the adjacent normal values. Then, the entropy
of each frame Ĥ(at|ot) is first concatenated with its time index t to preserve the temporal property.
All these obtained entropy points in one episode are normalized for clustering preparation.

Clustering for precision labeling. We adopt a density-based clustering method to divide those en-
tropy points into fine-grained and coarse-grained areas. Specifically, we adopt hierarchical density-
based clustering (Hdbscan) [33] to cluster those entropy points. Those high-entropy points are
labeled to outliers, while low-entropy areas are labeled to clusters. To further exclude clustering
noise, we simply filter all the obtained clusters by preserving clusters in which the mean entropy
values are lower than zero. All the time indices in the preserved clusters are labeled as set P , i.e.,
precision set; and the rest are identified as set C, i.e., casualness set.

Replicate-before-downsample strategy. After getting precision labels, now it’s possible to speed
up the temporal segments at different rates by down-sampling. However, naively down-sampling the
whole trajectory {(ot, at)}Tt=1 will significantly reduce the visited state diversity in the dataset, caus-
ing a severe waste of the demonstrations and empirically leading to a serious performance drop. To
avoid the potential information loss caused by acceleration, we develop a simple replicate-before-
downsample strategy, which retains all the observation frames that appear in the source dataset.
More specifically, at an acceleration rate of N×, the target chunk is replicated into N copies. The
i-th copy is down-sampled by N×with a starting offset of i frames. Instead of skipping the interme-
diate frames, our strategy essentially splits the chunk into N accelerated sub-chunks, thus retaining
the same diversity of the visited states as in the source demonstrations.

Geometrical consistency. Since action chunking has crucial impact on imitation learning perfor-
mance, it is necessary to determine the chunk length of the accelerated policy trained on speedup
demonstrations. We opt to keep the geometrical distance traveled by an action chunk roughly the
same as the original policy. This ensures that the accelerated policy only needs to fit much less
action labels than the original policy for the same segments in the demonstrations, which benefits
for converging and reducing compounding error.

Controller requirements. During data collection and deployment, acceleration requires high-
precision controller of the robot. Apparently, if the controller is inaccurate, the control dynamics
could differ a lot between the original speed and speedup actions, which also leads to a performance
drop. During evaluation, we find some robot gripper controllers fail to track high speed and cause
failures. We simply increase the gripper gain to solve this problem.
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Figure 3: Simulation tasks. The environments are from Aloha and Bigym, featuring bimanual and
mobile manipulation from human-collected datasets.

Method Transfer Cube Insertion Sandwich Remove Move Plate Load Cups Put Cups

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

success
rate(↑)

ACT 72% 291 21% 452 53% 368 54% 157 61% 319 61% 288
ACT-2x 70% 162 13% 238 46% 193 46% 119 50% 195 54% 141
ACT+DemoSpeedup 81% 121 30% 151 77% 156 53% 91 59% 176 62% 132

DP 66% 281 16% 431 52% 352 52% 170 15% 419 12% 386
DP-2x 61% 146 12% 245 51% 247 41% 125 11% 177 7% 243
DP+DemoSpeedup 74% 107 29% 218 54% 217 49% 113 38% 171 21% 205

Method Saucepan to Hob Drawers Close Open Trays Flip Cutlery Cupboard Open Averaged

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

episode
len(↓)

success
rate(↑)

speedup
(↑)

ACT 86% 383 100% 119 100% 244 63% 193 100% 146 77% 1.0×
ACT-2x 81% 224 87% 84 93% 149 49% 121 96% 103 69% 1.7×
ACT+DemoSpeedup 92% 163 100% 63 100% 105 62% 141 100% 81 82% 2.1×
DP 79% 324 96% 114 94% 245 22% 175 100% 181 55% 1.0×
DP-2x 41% 242 81% 65 86% 157 18% 127 94% 161 45% 1.6×
DP+DemoSpeedup 79% 169 89% 59 96% 138 17% 98 100% 103 59% 1.9×

Table 1: Simulation Results. DemoSpeedup achieves remarkable speedup effects while maintaining
comparable success rate across different robot platforms and tasks.

4 Experiments

4.1 Simulation Experiments

Compared Methods. We compare the accelerated policies trained with DemoSpeedup-accelerated
datasets against the same ACT or DP policies trained with the original-speed demonstrations. Addi-
tionally, we compare DemoSpeedup to more straightforward test-time acceleration [6] that naively
downsamples the action chunk during evaluation by 2×, which we call ACT-2× and DP-2×.

Tasks. We consider a total of 11 tasks selected from Aloha [15] and BiGym [34], shown in
Fig 3. For Aloha, we focus on the tasks with relatively high precision requirements. We select
Transfer Cube and Insert, with 50 human demonstrations provided for each task. For BiGym, we
focus on mobile manipulation and tasks with longer horizons. We improve ACT and DP to have
better performance on mobile manipulation tasks by 1) transforming the base action space into
position control; 2) replacing the Resnet [35] with Multi-view Vision Transformer [36] in DP to
enhance multi-view fusion ability. For fair evaluation, we replay the demonstrations provided in the
benchmark and filter out the failed ones [37]. Tasks with extremely low success rate (< 10%) are
excluded. A total of 9 BiGym tasks are selected, with different numbers of demonstrations provided
in the benchmark and control frequencies ranging from 20Hz to 50Hz.
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Figure 4: Real-world Setup. We consider five real-world challenging tasks. Sort, Kitchenware
emphasize long-horizon manipulation that require multiple skills. Bomb Deposal requires precise
manipulation. Conveyer and its variation Conveyer Fast is sensitive to manipulation speed.

Metrics. For evaluation, we report the task completion success rate and the averaged episode
length for a successful policy rollout to measure time efficiency. For Aloha, we perform 50 episode
rollouts using the checkpoint with minimal validation loss [27, 15]. For BiGym, we report the
maximum success rate and corresponding average episode length among 50 evaluations throughout
the training. All the results are averaged across 3 seeds.

Results. The quantitative results are presented in Table 4. Compared to ACT or DP trained on
original-speed demonstrations, the same policies trained with DemoSpeedup-accelerated datasets
achieve the shortest time to complete the tasks while maintaining comparable performance. Overall,
DemoSpeedup achieves an average speedup of approximately 2× across different task setups and
algorithms, with a maximum speedup of 3×. On the other hand, while test-time downsampling
shortens the completion time to a certain extent, it causes an average performance drop of over 8%.
This reveals the advantage of demonstration acceleration over test-time acceleration.

4.2 Real-World Experiments

Tasks. We design 5 tasks and a variation on Galaxea R1, a bimanual humanoid platform. The tasks
emphasize either long horizon or time sensitivity, as illustrated in Figure 4.

• Pen in Cup: The robot needs to pick up a pen and place it inside of the cup.

• Sort: The robot is required to put all white yoghurt bottles into the green basket and all red
ones into the white box.

• Kitchenware: The robot needs to grasp the chopsticks, bowl, and plate sequentially with its left
arm, transfer them to the right arm, and then place them at the designated location. This is a
long-horizon task requiring multiple skills like transferring and insertion.

• Bomb Deposal: The robot needs to grasp the bomb toy, move it to its chest, and then precisely
collaborate two arms to detach the battery wire.

• Conveyer: The robot is required to pick up the scanner, grasp the moving bag on the conveyor
belt, scan the bag with the scanner, and then place the bag into the basket. Bags are continuously
placed onto the conveyer belt by human.

• Conveyer Fast: We evaluate the same checkpoints as in Conveyer on a 2× faster conveyer. It
aims to simulate the situation where we want the robot more productive than the collected data.

For each task, the RGB visual observations are recorded through a Zed2 Camera mounted on the
robot’s head, and 100 demonstrations are collected using the GalaxeaVR suite [38]. The object
configurations are randomized both in data collection and evaluation.
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Method Pen in Cup Sort Bomb Deposal Kitchenware Conveyer Conveyer Fast

success
rate (↑)

cost
time (↓)

success
rate (↑)

cost
time (↓)

success
rate (↑)

cost
time (↓)

success
rate (↑)

cost
time (↓)

success
rate (↑)

cost
time (↓)

success
rate (↑)

cost
time (↓)

ACT 16/30 19.45s 29/40 56.78s 7/27 42.13s 6/33 66.32s 18/30 13.14s 2/30 12.68s
ACT+Ours 24/30 8.28s 31/40 20.38s 6/27 26.31s 7/33 27.26s 21/30 6.57s 16/30 6.28s

DP 15/30 15.69s 32/40 39.29s 6/27 35.69s 19/33 61.12s 28/30 13.39s 7/30 12.96s
DP+Ours 23/30 7.52s 38/40 18.32s 11/27 19.18s 17/33 39.23s 25/30 6.24s 27/30 6.03s

Table 2: Real-World Results. The results demonstrate the efficiency of DemoSpeedup in accelerat-
ing the speed of visuomotor policies and the potential to improve the success rate.

Metrics. We conduct ∼ 30 evaluation trials for each task, reporting the number of successful trials
and the average time cost. The time cost is recorded by a stopwatch, which starts timing when the
robot leaves its default joint positions and stops timing when the robot completes the task and returns
to the default joint positions.

Efficiency in boosting the speed of policy. As shown in Table 4.2, DemoSpeedup achieves the low-
est cost time among different tasks while maintaining the performance. For tasks that require much
accuracy such as Bomb Deposal and Kitchenware, DemoSpeedup achieves at least 160% speedup.
For tasks that are not demanding on precision, DemoSpeedup achieves a even higher speedup, such
as 278% for ACT and 214% for DP in the Sort task. Besides, we notice that DemoSpeedup obtains
a higher speedup on ACT than DP. This is partly due to the DP inference delay. The sudden pause
caused by the delay between faster movements can make the motions of DP a little more jittery,
leading to a slight decrease in acceleration outcome.

Potential for improving the success rate. Interestingly, DemoSpeedup could even boost the success
rate in some tasks. We argue this is partially because DemoSpeedup reduces the decision horizon,
thereby reducing the compounding error in imitation learning [29]. Another reason is that when
training policy with demonstrations, the change per timestep decreases proportionally as the speed
is lower. Thus the marginal information of the action at each timestep is reduced, making it chal-
lenging for the policy training to converge and fit complex datasets [39]. For example, in Pen in Cup
tasks, the test positions of the cup are covered by the training data, but policies trained on original
demonstrations are more likely to miss the correct position of the cup than those trained on speedup
demonstrations. In addition, we observe that due to the real-world and Aloha demonstrations being
slower than those in Bigym, the performance gains from DemoSpeedup are more pronounced in the
former two. This indicates that there is some correlation between the quality and speed of data, and
DemoSpeedup helps for fitting the dataset.

4.3 Ablations

Ablation ACT DP

DemoSpeedup 56% 52%
w/o. RBD strategy 29% 26%
w/o. geometrical consistency 31% 34%
w/o. high precision ctrl 53% 41%

Table 3: Success rates on ablations.

We select two tasks from Aloha and utilize ACT
and DP to conduct ablation studies in more de-
tails. Three designs are ablated: naively down-
sample the whole trajectory instead of the replicate-
before-downsample(RBD) strategy; adopt the same
action chunk length instead of geometrically con-
sistent chunk length; gripper without high-precision
control. We report the success rate averaged across
tasks. As shown in Table 3, all these designs are significant for the performance of DemoSpeedup.

4.4 Visualization Analysis

To delve deeper into what patterns the entropy captures, we visualize the entropy curve alongside
snapshots from the corresponding demonstrations. As shown in Figure 5, the entropy and our seg-
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Figure 5: Entropy Visualization. We showcase snapshots from the replayed demonstration and the
corresponding normalized entropy curve of Sort(upper row) and Kitchenware(lower row). The green
of the curve and the background stands for segmented precision set while red represents casualness
set. The estimated entropy effectively captures both delicate skills and causal movements.

ment approach effectively distinguish precise skills from nonchalant movements. Most Motions that
approaches an object (Mark 2) or move an object in the air (Mark 5) are recognized as impeccable
part. For precision part, the entropy curve could recognize not only contact-rich skills, like picking
the yogurt (Mark 1) and transferring the chopsticks (Mark 3), but also contact-free motions such as
carefully withdrawing the gripper from the inserted plate to prevent knocking over the plate (Mark
6), or cautiously aligning the chopsticks with the narrow box gap (Mark 4).

5 Conclusion

In this paper, we present DemoSpeedup, a self-supervised method to accelerate visuomotor policy
execution. DemoSpeedup leverages the action entropy of the data estimated from a trained gener-
ative policy to guide the acceleration of demonstrations. A clustering-based scheme is proposed
to segment the demonstrations into different precision levels according to the entropy. Then those
segments are down-sampled at rates that increase with the entropy. Our experiments demonstrate
the DemoSpeedup can achieve remarkable speedup while maintaining the task performance across
different imitation learning algorithms and robot platforms.

Limitations. There are several limitations of this work. First, though DemoSpeedup could im-
prove the success rate in some tasks, it occasionally causes minor performance drops, probably
because of the dynamics mismatch between the original and accelerated demonstrations. Second,
as a self-supervised approach, the DemoSpeedup pipeline avoids the trouble of human supervision.
However, due to the inherent variations in the execution speed of datasets collected by different hu-
man operators, the potential for acceleration also varies. As a result, the desired acceleration rate
in DemoSpeedup needs to be manually determined. Finally, this work doesn’t consider the DP in-
ference delay that has an influence on execution acceleration. This can be solved using distillation
methods[40, 41] or flow-based policies[2].
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Appendix

6 DemoSpeedup pseudocode

We provide the complete pseudocode of DemoSpeedup in Algorithm 1.

Algorithm 1: DemoSpeedup for accelerating demonstrations to train visuomotor policy.

Input: D = {τi}Bi=1, τi = {ot, at}Tt=1; // original demonstrations
Train πproxy on D; // train proxy policy on original demonstrations with ACT or DP
// action entropy estimation via proxy policy
def get entropy(πproxy, τi):

Initialize: t = 1, Hlist = [ ], S = {}, N
//Hlist is the entropy list, S is the action sample set, N is the number of samples
while t < T do

for i← 1 to N do
Âi

t ←− πproxy(At|ot, zi);// At is the action chunk, zi is sampled latent
variable for ACT and sampled noise for DP

Add action samples in Âi
t to S;

end
CalculateHt according to Equation1,2;
AddHt toHlist;

end
returnHlist;

// accelerate demos with entropy
def accelerate demos(Hlist,D):

Preprocess: Hlist ←− Isolation Forest(Hlist);
Label Precision: {P,C} ←− Hdbscan Cluster(Hlist);
Initialize: Dspeedup = {τspeedupi }Bi=1, τspeedupi = [ ],K
// K is the chunk size of accelerated policy
for i← 1 to B do

Sample τi from D; for t← 1 to T do
Sample {ot, at:T } from τi;
Aspeedup

t ←− piecewise downsample actions(at:T , {P,C});
Add {ot, Aspeedup

t [: K]} to τspeedupi ;
end

end
return Dspeedup;

// down-sample actions in sub-trajectories with precision label guidance
def piecewise downsample actions(at:T , {P,C}):

Initialize: rhigh, rlow, indices = [ ]; // rhigh, rlow is high and low down-sample ratio
for i← t to T do

if [i : i+ rhigh] ⊆ C then
i← i+ rhigh, Add i to indices;

else
i← i+ rlow, Add i to indices;

end
end
Aspeedup

t ←− aindices;
return Aspeedup

t ;
Train πspeedup on Dspeedup by directly imitating {ot, Aspeedup

t [: K]};
// train accelerated policy on accelerated demonstrations with ACT or DP
output: πspeedup
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7 Additional Comparisons

7.1 Comparison with other demonstration speedup methods

We further compare the performance of DemoSpeedup with other down-sample baselines by replac-
ing the entropy guided piecewise acceleration with following methods:

• Contact Oracle: We design a contact-based heuristic to segment low-precision and high-
precision subtrajectories. The division rule is as follows: whenever a new object-pair contact
or detachment occurs in the Manipulation scene (e.g., the gripper contacts with the object, or
one object contacts with another object), a constant time before and after the moment when the
contact state changes are labeled as precision. The rest of the time is labeled as casualness.
Note that this method requires oracle information and precise 3D priors, which are difficult to
obtain in real-world settings with only 2D camera inputs.

• AWE*: We adjust a dynamic programming method from AWE[27] to down-sample the data.
AWE aims to promote success rate. It minimizes the trajectory length by 7×−10× given a thresh-
old constraint of piece-wise linear approximation error of the joint-angle trajectories. AWE
needs much longer time than demonstrations to reach waypoints. So we tune the threshold to
reduce the trajectory length to roughly 2× and use the same control frequency as demonstra-
tions for acceleration. Besides, AWE only relies on joint-angle trajectories which can be noisy
and task-irrelevant. We improve it by re-weighting the approximation error with entropy.

• Constant 2×: Directly down-sample the demonstrations at 2× ratio.

• Constant 3×: Directly dow-sample the demonstrations at 3× ratio.

Method & Algo Transfer Cube&ACT Insertion&ACT Transfer Cube&DP Insertion&DP

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

Origin 40% 321 11% 435 47% 289 12% 329
Contact Oracle 37% 140 15% 142 37% 124 11% 127
DemoSpeedup 40% 137 22% 125 49% 121 16% 145

Table 4: Comparison with Contact Oracle. We collect a new dataset including contact information
using a trained checkpoint to conduct the experiment. DemoSpeedup achieves a comparable success
rate with Origin while Contact Oracle often performs worse than Origin.

Method & Algo Transfer Cube&ACT Insertion&ACT Transfer Cube&DP Insertion&DP

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

success
rate (↑)

episode
len (↓)

Origin 72% 291 21% 452 66% 281 16% 431
AWE* 63% 148 14% 183 53% 169 9% 221
Constant 2× 80% 167 27% 242 75% 152 20% 247
Constant 3× 47% 126 7% 163 39% 109 4% 198
DemoSpeedup 81% 121 30% 151 74% 107 29% 218

Table 5: Comparison with other baselines. Compared to other down-sample methods, our ap-
proach achieves the best balance between success rate and speed.

Additionally, we utilize Origin to refer policies trained on original demonstrations. Other factors
including replicate-before-downsample and Geometrical consistency are the same to guarantee a
fair comparison. We conduct experiments on Aloha with ACT and DP. To compare with Contact
Oracle, since the original datasets doesn’t offer any privileged information, we recollect 50 new
demonstrations including the contact information by rollouting a trained ACT. Then Contact Oracle,
Origin and DemoSpeedup are all trained on this dataset for comparison. To compare with other
methods, we still use the original dataset.
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The comparison results with Contact Oracle are shown in Table 4. DemoSpeedup achieves a better
performance than Contact Oracle while achieving similar speedup. Contact Oracles often falls
short of the success rate of Origin. We argue that this is because contact pattern can’t account for
all precision patterns and could only offer a rough estimation of precision. For example, in Insertion
task, the contact pattern keeps the same after one block first contacts with the other block, thus failing
to capture the contact-rich phase of one block being inserted to the other. Besides, the constant time
period around the contact change moment fails to offer an accurate estimation of precision stage
duration.

The comparison results with other methods are shown in Table 5. DemoSpeedup strikes the best
balance between the success rate and speedup. Specifically, DemoSpeedup achieves a similar per-
formance with Constant 2× and a similar speedup with Constant 3×. Additionally, though AWE
could promote success rate in its original setting, we find AWE* even worse than Constant 2× for
acceleration. It is mostly because the approach is based on dynamic programming which doesn’t
consider the smoothness of selected actions. Therefore, the accelerated policy often produces jit-
tery motions, which hurts the performance. This demonstrates the unique challenge of accelerating
policy execution that is different from traditional down-sample settings.

7.2 Comparison with traditional down-sample approaches

Down-sampling the demonstrations has been a widely used practice in robot community. However,
most down-sample approaches serve for improving the performance rather than accelerating policy
execution. DemoSpeedup differs from previous approaches in following two ways:

• Execution frequency. Our down-sample method decreases the demonstration frequency but
doesn’t decrease the policy execution frequency. For example, for a 50Hz recorded demonstra-
tion, traditional methods may down-sample it to 20Hz and deploy the trained policy at 20Hz.
However, in our setting, we down-sample it at 20Hz but deploy the checkpoint at original 50Hz
in order to accelerate execution.

• Novel Challenge. The main challenge in this work is to maintain the performance while speed-
ing up the execution. Thus even a < 5% drop in success rate is intolerable. Besides, previous
methods such as Keyframes[42] rely on close-loop control to reach down-sampled waypoints,
so the speed is even slower than original demonstrations. On the contrary, the execution speed
in this work is much faster than the demonstrations. Thus, the challenge of acceleration de-
mands a much higher accuracy in recognizing precision patterns than traditional settings. Tradi-
tional heuristic methods perform poorly against this challenge, as shown in 7.1. DemoSpeedup
well mitigates this challenge using entropy and maintains the performance.

8 Hyperparameters

8.1 High and low down-sample ratio

Task {rlow, rhigh} Task {rlow, rhigh}
Transfer Cube {2, 4} Open Trays {2, 4}
Insertion {2, 4} Flip Cutlery {1, 3}
Sandwich Remove {2, 4} Cupboard Open {2, 4}
Move Plate {2, 4} Pen in Cup {2, 4}
Load Cups {2, 4} Sort {2, 4}
Put Cups {2, 4} Kitchenware {2, 4}
Saucepan to Hob {2, 4} Bomb Deposal {2, 3}
Drawer Close {2, 4} Conveyer {2, 4}

Table 6: Hyperparameter of high and low down-sample rate for ACT.

The key hyperparameters in DemoSpeedup is rhigh and rlow, the high and low down-sample ratio.
They directly impact the performance and speedup of accelerated policy. We keep them the same
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Task {rlow, rhigh} Task {rlow, rhigh}
Transfer Cube {2, 4} Open Trays {2, 4}
Insertion {2, 4} Flip Cutlery {1, 3}
Sandwich Remove {2, 4} Cupboard Open {2, 4}
Move Plate {2, 3} Pen in Cup {2, 4}
Load Cups {2, 4} Sort {2, 4}
Put Cups {2, 3} Kitchenware {2, 3}
Saucepan to Hob {2, 4} Bomb Deposal {2, 3}
Drawer Close {2, 4} Conveyer {2, 4}
Table 7: Hyperparameter of high and low down-sample rate for DP.

in most tasks, proving the robustness and generalization of our approach. However, if some non-
accelerated demonstrations are fast enough or the task requires extremely precision, we need to
manually tune them via several trials. rhigh and rlow are shown in Table 6 and 7. Empirically,
selecting down-sample rate is relatively easy, as we only use integers as the down-sample ratio. One
can train checkpoints for multiple ratios simultaneously and evaluate which works best.

8.2 ACT Hyperparameters

We utilize the same hyperparameter configuration for ACT across all tasks, shown in Table 8. For
chunk length, we utilize time duration to represent it, as different tasks in this work have different
control frequencies. The specific chunk size is the chunk length multiplied by the control frequency.
For ACT+DemoSpeedup, we use half of ACT’s chunk length to ensure geometrical consistency.
This is based on the observation that most speedups in our experiments are around 2×.

Hyperparameter ACT ACT + DemoSpeedup
learning rate 1e-5 1e-5
# encoder layers 4 4
# decoder layers 7 7
feedforward dimension 3200 3200
hidden dimension 512 512
# heads 8 8
chunk length 1s 0.5s
beta 10 10
dropout 0.1 0.1

Table 8: Hyperparameters of ACT + DemoSpeedup and ACT. The only difference is the reduc-
tion in chunk size.

Hyperparameter Aloha Bigym Real-world
observation horizon 1 1 1
diffusion step embed dim 128 256 128
down dims [512,1024,2048] [256,512,1024] [512,1024,2048]
kernel size 5 5 5
n groups 8 8 8
vision model Resnet18 MVT[36] Resnet18
chunk size 48 16 24
Lr 1e-4 1e-4 1e-4
WDecay 1e-6 1e-6 1e-6
scheduler DDIM DDIM DDIM
D-Iters Train 100 100 100
D-Iters Eval 10 10 10

Table 9: Hyperparameters for Diffusion Policy.
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Hyperparameter Aloha Bigym Real-world
observation horizon 1 1 1
diffusion step embed dim 128 256 128
down dims [512,1024,2048] [256,512,1024] [512,1024,2048]
kernel size 5 5 5
n groups 8 8 8
vision model Resnet18 MVT[36] Resnet18
chunk size 24 8 12
Lr 1e-4 1e-4 1e-4
WDecay 1e-6 1e-6 1e-6
scheduler DDIM DDIM DDIM
D-Iters Train 100 100 100
D-Iters Eval 10 10 10

Table 10: Hyperparameters for DP+DemoSpeedup. The only difference with DP is the reduction
in chunk size.

8.3 Diffusion Policy Hyperparameters

We utilize separate hyperparameter configurations across Aloha, Bigym and real world for best
performance, shown in Table 9, 10. All the DP used in our experiments are CNN-based.
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